ANALYSIS OF THE HORIZONTAL EFFECTIVE THERMAL
CONDUCTIVITY OF A FLUIDIZED ALUMINA BED UNDER
STEADY-STATE CONDITIONS

L. E. Krigman and A, P. Baskakov UDC 536.2:541,182

A critical relation is derived for calculating the thermal conductivity of a fluidized
alumina bed. Based on the solution to the equation, formulas are then derived for eval-
uting the nonuniformity factor of the temperature field in a fluidization chamber which is
heated around its walls,

When heat is supplied from the sidewalls of a fluidizing chamber which are spacedfarfrom the center,
a nonuniform fransverse temperature field will be established in that chamber. The degree of nonuni-
formity, an evaluation of which is necessary for the design of industrial apparatus, depends on the chamber
dimensions as well as on the effective thermal conductivity of the fluidized bed, The data published so far
on the horizontal effective thermal conductivity of fluidized beds are of no use in evaluating the nonuni-
formity of the temperature field in a large chamber, since studies, although most thorough, have been
made on scaled-down models. At the same time, it is well known that the heat-transfer coefficients in-
crease drastically as the chamber dimensions become larger (see [1, 2]). For this reason, considering
that practical problems must be solved which arise in the design of a large furnace with a boiling bed,
the authors have studied the horizontal effective thermal conductivity of a scaled-up fluidized alumina bed.

The study was conducted under steady-state conditions. This made it possible to avoid a number of
shortcomings [2] inherent in the heat-pulse method [3, 4, 5].

For the experiment we used a slitted chamber 1000 X 70 mm and 1500 mm high, lined with fire-
clay brick 230 mm thick (113 mm at the top). Ambient air was supplied from underneath through a 1% ac~
tive area in the solidly sintered grate (Fig. 1). The heat source was a 2.4 kW electric heater immersed in
the bed near the endwall. Six Chromel —Alumel control thermocouples and six Chromel —Copel measuring
thermocouples were installed in the chamber with their hot junctions 80 mm above the grate,

The horizontal distance between the measuring thermocouples was 130 mm. Their cold junctions
were connected through a switch to a KP-59 potentiometer. The air rate was checked by means of a flow-
meter diaphragm and a cup-shaped model MMN micromanometer. The material used ip the test was de-
aerated alumina having a density of 3.65 g/ cm? and the grain-size distribution (determined by a micro-
scopic analysis with an MIM-7 instrument) shown in Table 1.

The porosity of the solid (unrammed) bed was g5 = 0.7.

The use of a slitfed chamber in the experiments made it possible, according to Lehman’s analysis in
[6], to obtain the values of the heat-transfer coefficients close to their maximum for a given bed height, as
long as the bed height was smaller than the length of the chamber and the slit was not wider than 100 mm.
In this way, the nonuniformity of the temperature field in an industrial furnace could be evaluated quanti~
tatively from the test results obtained with a long, slitted chamber.

The tests were performed with interstitial velocities ranging from 0.14 to 0.88 m/sec. The velocity
at which fluidization began was determined experimentally and found to be 0.06 m/sec at an air tempera-
ture of 11°C. The mean temperature of the bed varied between 40 and 190°C depending on the air velocity
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Fig. 1. Temperature distribution along the test segment in five test runs. 1)

Hy =0.36 m; w = 0.303 m/ sec; (8 —t)mean =44°C; aeff = 31.8 cm?/ sec; 2) re-
spectively, 0.18; 0.295; 89; 23.8; 3) 0.14; 0.287; 101; 14.1; 4) 0.11; 0.200; 137;
6.06; 5) 0.07; 0.285; 100; 7.33; 2) thermocouples; b) heater.

Fig. 2. Heat-transfer coefficients (cm?/sec) as a function of interstitial
velocity w (m/sec): 1-3) aefr (dy = 90 p); 4-5) Degf (d, = 350 p) sand [7];
1) Hy; = 0.37 m; 2) 0.15 m; 3) 0.07-0.1 m; 4) 0.12; 5) 0.06 m.

v

and temperature, also on the height of the bed. When calculated by the formula wy = wy; (¢#1/1) [7], the
velocity at which fluidization begins would vary between 0.055 and 0.042 m/ sec and the fluidization number
between 2.78 and 8.0. The height of the solid bed varied from 0.06 to 0.37 m.

As the electric heater was energized and air was supplied from underneath the grate, a definite tem-
perature profile became established in the chamber. At the beginning of the test the temperature was
checked with the control thermocouples once every hour, later with the measuring thermocouples every
half hour. A steady state was assumed to have been reached when the temperature at all six points re-
mained the same throughout the last three or four measurements. This corresponded to a balance be-
tween the quantity of heat supplied to the bed and the quantity of heat imparted to the air as it is warmed
and transmitted through the chamber walls. Owing to the considerable length of the slitted chamber and to
the ample power of the heat source, the temperature gradients along the chamber were high (tens of de-
grees). As a result, possible errors in the determination of temperature values averaged in time at an
individual point should have had no significant effect on the accuracy of determining Aeff.

Several curves representing the temperature distribution along the chamber are shown in Fig. 1.

The calculation of aepp is based on the Fourier —Kirchhoff differential equation analogous to
the equation which describes the steady-state cooling of a beam. It is assumed that the gas arrives
under the grate at a constant temperature t equal to the ambient air temperature, that the gas is
uniformly distributed across the chamber section, and that the temperature of the bed varies only be~
tween one section perpendicular to the direction of heat flow and another [8], while remaining constant
across every section: )

FO—1) _wegl®0—1) , 2(©O—1

- ; (1)
dx H;\‘eff b}“'eff

where

k= L . (2)
Loy 4+ 8/h + 1o,
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TABLE 1

Size of ‘ ‘
] 140160 | 120140 | 100—120 | 80—100 | 60—80 | 40--60 | 20—40 | 10~20 10
particles { |
Weight | { {
fraction, % | 0,13 } 2,2 13,2 | 37,0 | 37,2 9,1 0,7 0,4 —

Since o is of the order of hundreds of W/ m?- deg [9], while a, is much smaller (o, ~ 10 W/m?- deg
is assumed in the calculations), the first term in the denominator of (2) may be disregarded.

Solving Eq. (1) with the boundary conditions

x=0; 0=0;
=t (£) o
dx/x;:{

(i.e., assuming that the heat losses through the endwall are negligible), we arrive at the following relation:

80—t  chiml[{l—XJ]

, (3)

0, —t ch (mi)
where
Y (B B i N
m — .
l/ ( H " b ) henr (
At x =1 (X =1) equality (3) simplifies, to yield a solution for m:
m = arch 0=t I 5

!

In order to reduce the effect of random errors, m was calculated not only for the first and the last
point but also for intermediate points. Since the value of m for the intermediate points could not be ex-
pressed in explicit form, the calculations were performed on a Minsk-22 computer, using expression (3)
to approximate the temperature distribution curves corresponding to the computed values of m. The com-
puter program provided for a choice of m values such as to distribute the test points relative to the cal-
culated curve (3) according to the rule of least squares.*

In the formula relating the heat-transfer coefficient to the principal fluidized bed parameters it was
more expedient to use the thermal diffusivity aggp rather than the thermal conductivity Xeff, because aeff
is similar to the diffusivity of the solid phase Dggr, thus allowing our experimental resuits to be compared
with those obtained by other authors. Furthermore, the values of aepp — unlike those of Aqpp — depend very
little on the expansion of the bed and this expansion during fluidization would have been difficult to deter-
mine with sufficient accuracy.

From @), inserting aeqp = 7\eff/ cypp @ —€) [9] and performing the necessary transformations, wé
obtain

ZWCG+ 2kHb_~1
’nszpMHO (1 - 80) ‘

Geff = (6)

An anmalysis of experimental data has shown that the second term in the numerator of (6) does not
exceed 10% of the total and, therefore, a small error in the determination of H should not significantly
affect the accuracy of determining aqg.

In Fig. 2 we show the effective thermal diffusivity as a function of w for three different bed heights:
0.08, 0.15, and 0.37 m. At the same time, curves have been plotted here for the thermal diffusivity of the
solid phase Degf as 2 function of the interstitial velocity through sandof the 0.2-0.5 mm size, based on the
study by Pippel et al. [10] in which they used a model 400 mm in diameter and made radioactive sodium
tracer measurements in the horizontal direction for some definite length of time after it had been injected
into the bed. As can be seen here, the order of magnitude of aeff and Degf as well as the character of their
dependence on w are similar,

* The program was designed, the m values were computed, and the critical relation based ontest points was
found by co-workers of the YuzhNIIGIPROGaz A, 8. Aptekar, V, G. Yasenko, Z. N, Pancheva,and V. I. Pischasova,
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Fig. 3. Correlation between the generalized formula aegr/ Hyw, = 0.0115 (W
—~1)1.8 and experimental results.

Fig. 4. Calculated nonuniformity factor of the temperature field as a func-
tion of the chamber dimensions according to design. Values of Agpr and m
taken from tests (solid line for a parallelepiped, dashed line for a cylinder):
for test No, 16 [1) H = 0.115 m; w = 0.164 m/sec; Agef = 290 W/ m - deg; m
=2.53 m-1; for test No. 20: 2) respectively, 0.175; 0.180; 560; 1.55; for test
No. 12: 3) 0.420; 0.123; 775; 0.700; for test No. 13: 4) 0.300; 0.276; 2400;
0.705].

In the general case aggp is a function of several independent variables:
g [ (@ Hy, 0y 06, %, dp, 8)- : (7

According to the m-theorem, there should be 8 — 3 = 5 dimensionless ratios heré. Based on a dimen-
sional analysis and considering the effect of various parameters {11] on the value of aeff, we arrive at the
following relation:

aeff —— N(W— 1)n1 Al_nz EL ng Fr’&;_ (8)
Hyw, dP
The Froude number Frj = w(z,/ dpg remained almost constant and equal to 2.66 throughout the tests,

The other quantities in Eq. (8) varied as follows: (W —1) = (w/wy —1) from 1.78 to 7.0; Hy/ dp from 670
to 4100; Ar = (gd}/ v%) (pm/ pg) from 29 to 78; aepp/ How, varied from 0.038 to 0.42.

The power exponents and the coefficient m were calculated on a Minsk~-22 computer according to the
multiple-correlations program. As a result, the following equation was obtained:

0.049
deff _ 8,103 (W — 1)!"® Ar > (-H—") , (9y
%o dp

valid for Fry = 2.66. With an error not greater than 5% (within the given ranges of the variables), it could
be replaced by a simpler formula:

et 00115 W —1)"°. (10)
Hyw,

In Fig. 3 formula (10) has been correlated with the experiment. The maximum deviation of test points
from curve (10) was 28%.

The values of aeff calculated according to (10) ranged from 5 to 35 cm?/sec and the corresponding
values of Aqpp from 290 to 2400 W/ m - deg. .

With the Aeff'range known, it is possible to evaluate the nonuniformity of the temperature fields.
From Eq. (3), at X =1 and without losses through the walls, we have obtained:

0, —86; [ ( wcG”_l
- —1—{enf1y/ & )| . (11)
Y= iy
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In industrial furnaces the heat may be supplied through the wall of the eylindrical chamber. For
this case the solution to the Fourier equation at r = 0 is

8. —
Jo(m1R):—el‘—t

o — ¢

(12)

»

where Jy(m;R) is the second-order modified Bessel function of the first kind with

1/ % ' 13
e l/meff' (19

The Bessel function will now be replaced by the corresponding series {12]:
6, —t
(m,R)* {(m,RY* ’
Ty e T

14

8, = ¢ +

Retaining only the first two terms of this series, which is permissible (with an error not exceeding
5%) for mR = 1.4, we have substituting for m, from (13):
N R Bt (15)
eff 4H  8,—6,

An appropriate transformation yields for a cylindrical fluidization chamber:

po R ( I )*1. (16)
4H) A+ wegR? m*R?

The condition mR = 1.4 or its equivalent Agff = wegR?/1.96H is usually satisfied in large chambers
with heavy circulation systems [2]. According to the data in [1, 5, 8], Aeff is of the order of hundreds or
even thousands of W/ m-deg. It is not difficult to verify that Aefs = wegR?/1.96H for any even quite ar-
bitrarily chosen values of w and H within the ranges under consideration here.

In Fig. 4 we show how ¢ depends on the radius (half-length) of the chamber at various values of H,
w, apd Aefr taken from our test data.

For illustration, we will now determine the nonuniformity factor in an alumina dehydration chamber
where the bed is heated by means of tunnel burners mounted in the sidewalls 2/ = 5 mapartaccording to de-
sign, If Hy = 0.8 m, w = 0.3 m/sec, 0peapn = 500°C, H/Hy = 1.3, and Aggp = 2400 W/ m - deg (maximum
values obtained in our tests), then N

0.3-1300.273 094
(500 + 273).0.8-1.3.2400 ) '

At the same time, 3 =0.15. This means that deviations from the mean temperature amount to A9
/2 = 8mean-¥/2 =40°C. Consequently, the lowest temperature (at the center) is approximately 460°C
and the highest temperature (near the wall) is approximately 540°C.

=

NOTATION
b is the width of the chamber;
l is the length of the chamber heated from one end, or the half-length of the chamber heated
from both ends;
H,, H are theheights of the solid and the fluidized bed, respectively;
w is the interstitial velocity;
Wpi, Wp are the interstitial velocities at which fluidization begins at initial and at operating tem-
perature, respectively;
W is the fluidization number;
X, T are the space coordinates;
X =x/1 is a dimensionless cgordinate;
Z =H/Hg
CG» O are the specific heat of the gas and of the bed material, respectively;
is the heat-transfer coefficient;
T T are the heat-transfer coefficients at the inner and outer surface of a chamber, respectively;
4 is the chamber wall thickness;
A is the thermal conductivity of the wall material;
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t is the air temperature under the grate;
6, 01, 07, 9y are the temperatures of the fluidized bed: mean, at the initial point, at the end of the
slitted chamber, and at the center of the cylindrical chamber, respectively;
9 =(0—-ty/ (61 =1 is the dimensionless excess temperature; ;
£g, € are the porosity of the solid and the fluidized bed, respectively;
Aeff is the effective thermal conductivity;
Qoff is the effective thermal diffusivity;
P, PM arethe densities of the gas and of the bed material, respectively;
v is the kinematic viscosity;
Bis M are the dynamic viscosities under initial and operating conditions, reSpectlvely,
dp is the diameter of the particles;
Y =A0/(0; —t) is the nonuniformity factor of the temperature field.
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